In work from several years ago, co-authors and I developed a model of subglacial and englacial water storage that reproduces some of the characteristic patterns of glacier flow observed in the field. This work, published in the Journal of Glaciology, was motivated by observations from Kennicott Glacier in Alaska, where a large, ice-dammed lake drains beneath the glacier annually. During the flood, water delivery to the glacier temporarily overwhelms the glacier’s ability to convey that water through and beneath the glacier, and the glacier flow speed increases by a factor of 5.
Now, in recent work by Ed Bueler, head of the PISM ice sheet modeling group at UAF, the model described in Bartholomaus et al. (2011) has been extended in a manner that allows it to be implemented efficiently at a large scale. This distributed version of the hydrology model can now be used within PISM and other ice sheet models to simulate water flow at the base of, for example, the Greenland and Antarctic ice sheets. You can read more about Ed’s advance, published in the Journal of Glaciology, here.